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To overcome the computational mesh quality difficulties, mesh-free methods have been developed. One
of the most popular mesh-free kernel approximation techniques is radial basis functions (RBFs). Initially,
RBFs were developed for multivariate data and function interpolation. It is well-known that a good inter-
polation scheme also has great potential for solving partial differential equations. In the present study,
the RBFs are used to interpolate stream-function and temperature in a two-dimensional thermal buoy-
ancy flow acted upon by an externally applied steady magnetic field. Use of mesh-free methods promises
to significantly reduce the computing time, especially for the complex classes of problems such as
magnetohydrodynamics.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Radial basis functions are essential ingredients of the tech-
niques generally known as ‘‘meshless methods”. In one way or an-
other all meshless techniques require some sort of radial function
to measure the influence of a given location on another part of the
domain. The use of radial basis functions (RBF) followed by collo-
cation, a technique first proposed by Kansa [1], after the work of
Hardy [2] on multivariate approximation, is now becoming an
established approach and various applications to problems of
structures and fluids have been made in recent years. See, for
example, Leitão [3,4].

Kansa’s method (or asymmetric collocation) starts by building
an approximation to the field of interest (normally displacement
components) from the superposition of radial basis functions
(globally or compactly supported) conveniently placed at points
in the domain (and, or, at the boundary).

The unknowns (which are the coefficients of each RBF) are ob-
tained from the (approximate) enforcement of the boundary condi-
tions as well as the governing equations by means of collocation.
Usually, this approximation only considers regular radial basis
functions, such as the globally supported multiquadrics or the
compactly supported Wendland [5] functions.

Radial basis functions (RBFs) may be classified into two main
groups:
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1. the globally supported ones namely the multiquadric (MQ,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xjÞ2 þ c2

j

q
; where cj is a shape parameter), the inverse mul-

tiquadric, thin plate splines, Gaussians, etc;
2. the compactly supported ones such as the Wendland [5] family

(for example, ð1� rÞnþ þ pðrÞ where p(r) is a polynomial and
ð1� rÞnþ is 0 for r greater than the support).

In a very brief manner, interpolation with RBFs may take the
form:

sðxiÞ ¼ f ðxiÞ ¼
XN

j¼1

aj/ðjxi � xjjÞ þ
XN̂

k¼1

bkpkðxiÞ ð1Þ

where f(xi) is known for a series of points xi and pk(xi) is one of the N̂
terms of a given basis of polynomials [6]. This approximation is
solved for the aj unknowns from the system of N linear equations,
subject to the conditions (for the sake of uniqueness)

XN

j¼1

ajpkðxjÞ ¼ 0: ð2Þ

By using the same reasoning, it is possible to extend the interpola-
tion concept to that of finding the approximate solution of partial
differential equations. This is made by applying the corresponding
differential operators to the RBFs and then to use collocation at an
appropriate set of boundary and domain points. In short, the non-
symmetrical collocation is the application of the domain and
boundary differential operators LI and LB, respectively, to a set of
N–M domain collocation points and M boundary collocation points.
From this, a system of linear equations of the following type may be
obtained:
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Nomenclature

B magnetic field
B0 externally applied magnetic field of reference
c shape parameter used in the radial basis functions
f exact value of the functions at the interpolation points
g gravity vector
Gr Grashof number
Ha Hartmann number
J electric current density
L length of the cavity
M, N number of centers in the x and y direction, used in the

RBF approximation
P pressure
Pr Prandtl number
r euclidian norm between any two points
RBF radial basis function
s interpolated functions
T temperature
Th hot temperature
Tc cold temperature
T0 reference temperature

V velocity field
x, y coordinate axis

Greek symbols
a, b unknown coefficients of the RBF expansion
aT thermal diffusivity
bT thermal expansion coefficient
/ electric potential
g unknown coefficients of the RBF representing the

temperature and stream-function
l0 magnetic permeability of the vacuum
r electrical conductivity
t kinematic viscosity
n base functions of the RBF representing the temperature

and stream-function
w stream-function

Superscript
‘ dimensionless quantities
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LIuhðxiÞ ¼
XN

j¼1

ajLI/ðjxi � ejjÞ þ
XN̂

k¼1

bkLIpkðxiÞ

LBuhðxiÞ ¼
XN

j¼1

ajLB/ðjxi � ejjÞ þ
XN̂

k¼1

bkLBpkðxiÞ

ð3:a;bÞ

subject to the conditions
PN

j¼1ajpkðxjÞ ¼ 0 where the aj and bk un-
knowns are determined from the satisfaction of the domain and
boundary constraints at the collocation points.

2. Magnetohydrodynamic equations

In this paper we consider the laminar, steady and incompress-
ible fluid flow of an electrically conducting fluid within a square
cavity whose top and bottom walls are kept insulated and left
and right walls are subjected to different and constant tempera-
tures. The fluid properties are considered constants and the differ-
ence of temperature will originate a buoyancy force, which is
modeled using the Boussinesq’s approximation. The fluid is perme-
ated by a constant magnetic field which will create an additional
buoyancy force. The governing equations are the conservation of
mass, momentum, energy, and conservation of electric charges,
Ohm’s law and Ampere–Maxwell’s law [7,8] in a moving medium

r � V ¼ 0 ð4:aÞ

ðV � rÞV ¼ � 1
q
rP þ J

q
� Bþ mr2V � bT gðT � T0Þ ð4:bÞ

ðV � rÞT ¼ aTr2T þ J
qCp
� ð�r/þ V � BÞ ð4:cÞ

r � J ¼ 0 ð4:dÞ
J ¼ rð�r/þ V � BÞ ð4:eÞ

r � B
l0
¼ J ð4:fÞ

where l0 is the magnetic permeability of the vacuum. Note that the
Lorentz force is represented in the momentum equations through
the vector product of the electric current density and the magnetic
field. Also, in the above equations, the effects of polarization and
magnetization were neglected [7].

As discussed by Garandet et al. [9], the harmonic equation for
the electric potential, r/ = 0, is valid in the fluid as in the neigh-
boring solid media. The unique solution of the harmonic equation
is r/ = 0 since there is always an electrically insulating boundary
on which o//on = 0 around the enclosure. It follows that the elec-
tric field vanishes everywhere. Also, it is easy to show by substitut-
ing (4.f) into (4.d), that for a two-dimensional flow, the
conservation of the electric charges is automatically satisfied,
reducing the final set of equations to (4.a–c, e), with r/ = 0.

In the present paper, the magnetic Reynolds number Rm =
VLrl0 is very small. Also, the effects of Joule heating and viscous
dissipation are supposed to be very small, so we can neglect the
second term on the right hand side of (4.c).

Defining the stream-function

u ¼ @w
@y

; v ¼ � @w
@x

ð5:a;bÞ

and the following dimensionless quantities:

x0 ¼ x=L; y0 ¼ y=L; w0 ¼ w=v ; T 0 ¼ ðT � TcÞ=ðTh � TcÞ ð6:a-dÞ

where L is the length of the cavity and Tc and Th are the cold the hot
temperatures of the container walls, respectively, we obtain, com-
bining (4.a) and (4.b)

@w0

@y0
@3w0

@x0@y02
þ @

3w0

@x03

 !
� @w

0

@x0
@3w0

@y0@x02
þ @

3w0

@y03

 !

¼ @
4w0

@x04
þ 2

@4w0

@x02@y02
þ @

4w0

@y04
þ Ha2 @

2w0

@x02
� Gr

@T 0

@x0
ð7:aÞ

Also, substituting (5.a,b) into (4.c) we obtain

@w0

@y0
@T 0

@x0
� @w

0

@x0
@T 0

@y0
¼ 1

Pr
@2T 0

@x02
þ @

2T 0

@y02

 !
ð7:bÞ

where Ha, Gr and Pr are the Hartmann, Grashof and Prandtl num-
bers, respectively. They are defined as

Ha ¼ B0L
ffiffiffiffi
r
l

r
; Gr ¼ gbTðTh � TcÞL3

m2 ; Pr ¼ m
aT

ð8:a-cÞ

where B0 is the steady externally applied magnetic field of
reference.
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3. Test problem formulation

The test problem analyzed here is a square cavity, where the left
wall is subjected to a hot temperature and the right wall is sub-
jected to a cold temperature. The top and bottom walls are kept
thermally insulated. All four boundaries are subjected to no-slip
boundary conditions and a constant magnetic field is applied in
the x direction (from the left to the right wall). Notice that the
bi-harmonic equation (7.a) needs two boundary conditions for
each wall, which are given along the ones for Eq. (7.b)

w0 ¼ @w
0

@x0
¼ 0; T 0 ¼ 1 at x ¼ 0 ð9:a-cÞ
w0 ¼ @w
0

@x0
¼ T 0 ¼ 0 at x ¼ 1 ð9:d-fÞ
w0 ¼ @w
0

@y0
¼ @T 0

@y0
¼ 0 at y ¼ 0 ð9:g-iÞ
w0 ¼ @w
0

@y0
¼ @T 0

@y0
¼ 0 at y ¼ 1 ð9:j-lÞ

Several Hartmann numbers will be analyzed for two values of the
Grashof number (Gr = 104 and Gr = 106) and the final results will
be compared against Ref. [10] where the authors used the control
volume method on a uniform grid of 40 � 40 grid cells. The Prandtl
number was equal to 0.71 in all test cases.
4. Radial basis function approximation

Classical numerical methods, such as the finite volume method
and the finite difference method, need to use some kind of pres-
sure–velocity coupling scheme (for example, SIMPLEC Scheme
[11]) in order to obtain velocity fields in the momentum equation
(4.b) that satisfies the mass conservation equation (4.a). On the
other hand, in such methods, the use of the bi-harmonic equation
(7.a), which eliminates the pressure gradient, brings several prob-
lems of truncation error in the derivative approximations of the
4th order derivatives. Also, the convective terms are usually trea-
ted by some sort of hybrid or upwind method, such as the WUDS
[12] and the UTOPIA [13] algorithms.
Table 2
Comparison for the average Nusselt number using RBF with a different number of centers

Gr = 104 Average Nusselt number

Ref. RBF Error RBF Error RB
[10] (6 � 6) (%) (8 � 8) (%) (1

Ha = 0 2.01 2.46 22.39 2.19 8.96 2.0
Ha = 10 1.69 2.01 18.93 1.83 8.28 1.7
Ha = 25 1.14 1.25 9.65 1.21 6.14 1.1
Ha = 50 1.00 0.89 11.00 1.02 2.00 0.9

Table 1
Computing time (in s) for solving the MHD problem using RBFs with different number of

Gr = 04 CPU time (s) CPU time (s)
RBF (6 � 6) RBF (8 � 8)

Ha = 0 0.72 2.05
Ha = 10 0.66 1.70
Ha = 15 0.63 1.83
Ha = 25 0.56 1.69
Ha = 50 0.42 1.17
In this paper, we use a RBF formulation to solve the Eqs. (7.a-b)
as well as the boundary conditions (9.a-l). In the RBF formulation,
the stream function and the temperature are written as

w0ðx0; y0Þ ¼
XM

i¼1

ginðriÞ ð10:aÞ

T 0ðx0; y0Þ ¼
XN

j¼1

kjnðrjÞ ð10:bÞ

where the RBFs n are the same for the two expansions, but the
parameters g and k are different for each one. In Eqs. (10.a, b), M
and N are the number of centers used in the two RBF
approximations.

Substituting Eqs. (10.a,b) into Eqs. (7.a,b) we can obtain
XM

i¼1

gi
@nðriÞ
@y0

� � XM

i¼1

gi
@3nðriÞ
@x0@y02

" #
þ
XM

i¼1

gi
@3nðriÞ
@x03

" #( )

�
XM

i¼1

gi
@nðriÞ
@x0

� � XM

i¼1

gi
@3nðriÞ
@y0@x02

" #
þ
XM

i¼1

gi
@3nðriÞ
@y03

" #( )

¼
XM

i¼1

gi
@4nðriÞ
@x04

" #
þ 2

XM

i¼1

gi
@4nðriÞ
@x02@y02

" #
þ
XM

i¼1

gi
@4nðriÞ
@y04

" #

þ Ha2
XM

i¼1

gi
@2nðriÞ
@x02

" #
� Gr

XN

j¼1

kj
@nðrjÞ
@x0

� �
ð11Þ

XM

i¼1

gi
@nðriÞ
@y0

� �XN

j¼1

kj
@nðrjÞ
@x0

� �
�
XM

i¼1

gi
@nðriÞ
@x0

� �XN

j¼1

kj
@nðrjÞ
@y0

� �

¼ 1
Pr

XN

j¼1

kj
@2nðrjÞ
@x02

" #
þ
XN

j¼1

kj
@2nðrjÞ
@y02

" #( )
ð12Þ

Note that the boundary conditions given by Eqs. (9.a-l) should
also be written in terms of the RBFs. Thus, substituting (10.a,b) into
Eqs. (9.a-l) we obtain
XM

i¼1

ginðriÞ ¼
XM

i¼1

gi
@nðriÞ
@x0

� �
¼ 0;

XN

j¼1

kjnðrjÞ ¼ 1 at x¼ 0 ð13:a-cÞ
(collocation points) and the FVM with different number of volumes for Gr = 104.

F Error FVM Error FVM Error
5 � 15) (%) (15 � 15) (%) (41 � 41) (%)

2 0.50 2.10 4.48 2.06 2.49
0 0.59 1.89 11.83 1.84 8.88
7 2.63 1.38 21.05 1.32 15.79
7 3.00 1.10 10.00 1.06 6.00

centers and the FVM with different number of volumes for Gr = 104.

CPU time (s) CPU time (s) CPU time (s)
RBF (15�15) FVM (15 � 15) FVM (41 � 41)

50.60 47 440
34.03 56 560
40.14 63 562
42.59 69 684
25.53 74 778
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XM

i¼1

ginðriÞ¼
XM

i¼1

gi
@nðriÞ
@x0

� �
¼0;

XN

j¼1

kjnðrjÞ¼0 at x¼1 ð13:d-fÞ
XM

i¼1

ginðriÞ¼
XM

i¼1

gi
@nðriÞ
@x0

� �
¼
XN

j¼1

kj
@nðrjÞ
@y0

� �
¼0 at y¼0 ð13:g-iÞ
XM

i¼1

ginðriÞ ¼
XM

i¼1

gi
@nðriÞ
@x0

� �
¼
XN

j¼1

kj
@nðrjÞ
@y0

� �
¼ 0 at y ¼ 1 ð13:j-lÞ

Eqs. (11)–(13) result in a non-linear system of algebraic equa-
tions which can be solved with well-established numerical proce-
dures such as the Broyden’s quasi-Newton method [14]. Several
different choices are possible for the RBF function [6]. We used
the multiquadric which is given as
Fig. 1. Velocity and temperature profiles for 6 � 6 RBF centers.
nðriÞ ¼ niðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy� yiÞ

2 þ c2

q
ð14Þ

where c is a shape parameter used to control the smoothness of the
RBF. Up to this time, there is no well-established methodology to
choose this shape parameter, although some empiricism can be
found in the literature [15,16]. In this work, we will use the proce-
dure defined by [17], where c is taken as the minimum distance be-
tween two center points over the entire domain. Thus, c is increased
monotonically until the residual of the solution of Eqs. (7.a,b, 9.a-l)
is minimum. This procedure implies solving very costly non-linear
equations several times (in this paper we limited the upper value
of c to ten times its initial value), but the final result is worthy.

Note that Eqs. (11) and (12) should be written for each colloca-
tion point inside the domain. Thus, if we have L collocation points,
Eqs. (11) and (12) should lead to L equations each. Also, Eqs. (13.a-l)
should be written for each collocation point at the boundaries. If we
Fig. 2. Velocity and temperature profiles for 15 � 15 RBF centers.



Fig. 3. Streamlines and isotherms for Ref. [10] and for RBF method.

Table 3
Computing time when solving the MHD problem using RBFs with different number of
centers and the FVM with different number of volumes for Gr = 106.

Gr = 106 CPU time (s) CPU time (s) CPU time (s) CPU time (s)
RBF (15 � 15) RBF (25 � 25) FVM (25 � 25) FVM (41 � 41)

Ha = 0 134.80 1637.80 836 2593
Ha = 10 145.75 1288.08 919 2928
Ha = 15 138.00 2426.27 1014 3217
Ha = 25 166.58 1047.38 1058 3285
Ha = 50 73.09 913.36 1167 3223
Ha = 100 50.84 1528.84 1489 4560
Ha =1 71.52 4243.59 – –
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have P collocation points at the boundaries, the boundary condi-
tions for the bi-harmonic equation will result in 2P equations and
the boundary conditions for the energy equation will result in P
equations, since the bi-harmonic equation is a 4th order equation
and the energy equation is a 2nd order equation. It follows that,
in order to have the same number of variables and equations, M
should be equal to (L + 2P) and N should be equal to (L + P). In order
to circumvent this, we adopted the same strategy used in [17],
where some ghost centers are used outside of the domain for the
P extra variables needed. These points are located outside of the
domain, close to the boundary conditions.
5. Numerical results

In order to show how accurate the RBF-MHD formulation can
be, several test cases were analyzed, and the results were com-
pared with Ref. [10] where the authors used the control volume
method [18] on a grid of 41 � 41 equally spaced points. They
solved the vorticity conservation equation and not the bi-harmonic
Eq. (7.a). Also, in their paper, the results were shown for several
different inclinations of the cavity. Since the original papers
[10,18] did not show the computing times required to obtain the
desired solution, we also solved these problems by the finite vol-
ume method with primitive variables [8] and compared the com-
puting time required to obtain approximately the same order of
accuracy for the solutions obtained using the RBF-MHD
approximation.
In this paper we considered only the case where the cavity is
not tilted. Two test cases correspond to the Grashof numbers equal
to Gr = 104 and Gr = 106, where several Hartman numbers were
analyzed. In all test cases, Pr = 0.71. All test cases presented in this
paper were run on an Intel Centrino Duo (T2300 @ 1.66 GHz) pro-
cessor with 1 Gb of RAM memory. The code was written in FOR-
TRAN90 and the ‘‘cpu_time” intrinsic function was used to
measure the computing time.

For Gr = 104, the following Hartman numbers were analyzed:
Ha = 0, 10, 25 and 50. Table 1 shows the computing time required
to solve such problems, using several different numbers of RBF
centers (collocation points) for the RBF approximation and differ-
ent number of volumes for the finite volume method. Although
the RBF approach does not require the use of a computing grid
(the points can be randomly distributed), for the first results we
used a uniformly distributed grid. It can be seen that the comput-
ing time is extremely low when solving such problems with the
RBF. Although the RBF approximation with 15 � 15 collocation
points needs approximately the same amount of computing time
to solve the problem as the finite volume method with 15 � 15 vol-
umes, Table 2 shows that the numerical error obtained with the
RBF is an order of magnitude smaller. Also, in general, as the Hart-
man number increases, one can see from Table 1 that the comput-
ing time decreases for the RBF and increases for the finite volume
method.

Table 2 shows the comparison for the average Nusselt number
at the left and right walls computed in the present paper and in
Ref. [10], for Gr = 104. This table also shows the results obtained
by the finite volume method with primitive variables used in this
work. From Table 2, it is clear that as we increase the number of
centers in the RBF approximation, the discrepancy between these
two sets of solutions becomes smaller. Ref. [10] only shows the
average Nusselt number in graphics, so the ones used here for com-
parison were taken by measuring the graphics presented in [10]
and are not necessarily error free. Keeping this in mind, the RBF-
MHD formulation gives exceptionally good results, while requiring
very small number of centers for its formulation. From the inspec-
tion of Table 1, most of the results were obtained in less than 30 s.
A further investigation related to the choice of the shape parameter
c in the RBF approximation could reduce such computing time
even more. From Table 2, one can verify that it is necessary to



Fig. 4. Velocity and temperature profiles for 25 � 25 RBF centers.

Table 4
Comparison of the average Nusselt numbers using RBF with a different number of centers (collocation points) and the FVM with different number of volumes for Gr = 06.

Gr = 106 Average Nusselt number

Ref. RBF Error RBF Error FVM Error FVM Error
[10] (15 � 15) (%) (25 � 25) (%) (25 � 25) (%) (41 � 41) (%)

Ha = 0 8.76 10.68 21.92 9.21 5.14 8.24 5.94 7.98 8.90
Ha = 10 8.66 10.44 20.55 9.04 4.39 8.17 5.66 7.88 9.01
Ha = 25 8.04 8.92 10.95 8.32 3.48 7.81 2.86 7.39 8.08
Ha = 100 3.76 3.95 5.05 3.54 5.85 4.97 32.18 4.27 13.56
Ha =1 0.96 0.88 8.33 0.90 6.25 – – – –
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use a grid of 41 � 41 volumes in the finite volume method to ob-
tain a result with approximately the same order of accuracy as
the one with 15 � 15 centers in the RBF approximation. Thus, look-
ing back at Table 1, one can see that the finite volume method re-
quires at least one order of magnitude greater computing time
than the RBF to obtain the same level of accuracy.

Fig. 1 shows the velocity profiles at the points located along the
vertical axis and temperature along the horizontal axis of symme-
try of the cavity, both for the RBF-MHD formulation with 6 � 6
centers and for the results presented in [10], for Gr = 104. One
can see that even for this extremely low number of collocation cen-
ters, the velocity and the temperature profiles are very well cap-
tured. This becomes even more impressive when one looks at
Table 1 and sees that such results were obtained in less then 1 s.

Fig. 2 shows the same results, but now using 15 � 15 RBF cen-
ters. One can see that the accuracy of the results improves and now
the velocity profiles match the ones presented in [10], except for
our results with Ha = 25. Actually, our results for Ha = 50 match re-
sults for Ha = 25 in [10]. This suggests that results labeled Ha = 25
in [10] should actually have been labeled Ha = 50.

Finally, Fig. 3 shows the isotherms and stream functions for
Gr = 104, where it is clear that the MHD-RBF formulation gives very
good results compared with the ones presented in [10], even for a
very small number of centers.

The second set of test cases involved a Grashof number Gr = 106,
which corresponds to conditions where the thermal buoyancy ef-
fects are two orders of magnitude stronger. Thus, the magnetic
field needed to suppress such natural convection must be stronger
than the one previously discussed for Gr = 104. For this higher Gras-
hof number, the following Hartmann numbers were analyzed:
Ha = 0, 10, 15, 25, 50, 100 and infinity. Table 3 shows the comput-
ing time required, using different number of RBF centers and also
using different number of finite volumes in the finite volume
method used in this work. For this set of test cases, with higher
Grashof numbers, the number of required centers was greater than
in the previous case with Gr = 104. Also, comparing Tables 1 and 3,
one can see that, even for the same number of collocation points
(15 � 15), the computing time for the RBF, in the case with higher
Grashof number, increases by a factor greater than two for most
Hartmann numbers. In general, when the Hartmann number in-
creases, the computing time for RBF decreases. On the other hand,
when the Hartmann number increases, the computing time for the
finite volume method increases.

Table 4 shows the comparison for the average Nusselt number
for the test cases where the Grashof number was equal to
Gr = 106. Comparing Tables 2 and 4 for Gr = 104 and Gr = 106,
respectively, one can see that the relative errors for the later one
are higher, as expected. Such computing time could be decreased
if more efficient methods to solve the non-linear system of alge-
braic equations were used. Also, a better strategy to choose the
optimum shape factor c in the RBF approximation could lead to
shorter computing times and higher accuracy. From Tables 3 and
4, one can see that, for the test case where Gr = 106, in order to have
a result with approximately 5% of relative error in Nusselt number,
it takes approximately 30 min of computing time when using the
RBF-MHD model to solve the non-linear bi-harmonic and energy
equations. Comparing the RBF-MHD method with the finite vol-
ume method, one can see that for the same order of accuracy,
the RBF-MHD required 15 � 15 collocation centers, while the finite
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volume method needed 41 � 41 finite volumes. Thus, from Table 3,
the finite volume method required again a computing time that is
at least one order of magnitude greater than the RBF-MHD model
to obtain the same level of accuracy.

Fig. 4 shows the velocity and temperature profiles at mid-loca-
tion of the cavity, both for the RBF-MHD formulation with 25 � 25
centers, and for the results presented in [10], for Gr = 106. Although
the isotherms are close to the results presented in [10], the peak
values of the velocities are not very well captured, showing that,
for this test case 25 � 25 collocation points are not enough to solve
such a strong natural convection problem. This indicates that more
collocation points were needed for this test case. However, since
the computing time would increase considerably, this was not con-
ducted in this paper.

The streamlines and isotherms obtained by the RBF-MHD for-
mulation behave in the same way as those obtained in [10],
although some discrepancies were observed for the lower values
of Hartmann numbers, where the mass, momentum and energy
equations are more coupled.

In order to improve the accuracy of the solution, some extra re-
sults were obtained using a non-uniform distribution of centers.
Four different distributions were used, where a parameter v was
used to control such non-uniformity. Fig. 5 shows the distribution
of the 10 � 10 centers, for different values of the parameter v.

Also, the possibility of using a pseudo-random distribution of
collocation points was investigated. For such distribution, we used
the Sobol’s [19] algorithm with the constraint that the minimum
distance between any two points should meet some uniformity cri-
teria. Thus, the RBF-MHD model could be easily extended to very
complex geometries, where the grid generation is an issue. Fig. 5
Fig. 5. Distribution of the 10 � 10 centers, for different values of the param

Table 5
Influence of the non-uniformity factor v on the relative error of the solution for 6 � 6 cen

Gr = 104 Average Nusselt number

Ref. RBF Error RBF Error RBF
[10] (6 � 6) (%) (6�6) (%) (6 � 6)

v=0.0 v = 0.2 v = 0.4

Ha = 0 2.01 2.46 22.39 2.32 15.42 2.13
Ha = 10 1.69 2.01 18.93 1.93 14.20 1.76
Ha = 25 1.14 1.25 9.65 1.24 8.77 1.19
Ha = 50 1.00 0.89 11.00 0.96 4.00 0.87

Table 6
Influence of the non-uniformity factor v on the relative error of the solution for 15 � 15 c

Gr = 104 Average Nusselt number

Ref. RBF Error RBF Error RBF
[10] (15 � 15) (%) (15 � 15) (%) (15 � 15)

v = 0.0 v = 0.2 v = 0.4

Ha = 0 2.01 2.02 0.50 2.02 0.50 2.00
Ha = 10 1.69 1.70 0.59 1.70 0.59 1.69
Ha = 25 1.14 1.17 2.63 1.16 1.75 1.16
Ha = 50 1.00 0.97 3.00 1.00 0.00 0.97
also shows the distribution of 10 � 10 centers, using such pseu-
do-random algorithm.

Table 5 shows the deviation of the average Nusselt number
from the ones reported in Ref [10] for Gr = 104 and using 6 � 6 cen-
ters, for different values of parameter v and also for a pseudo-ran-
dom distribution of collocation points. From this table, the use of a
non-uniform distribution of centers, with v = 0.4, reduces signifi-
cantly the deviation from the results presented in [10]. As for
example, the relative error for Ha = 0 decays from 22.39% to
5.97%. For Ha = 10 and 25 there is also a decay in the relative error,
although for Ha = 50, the error increases a little. The use of a pseu-
do-random distribution for the collocation points also reduces sig-
nificantly the error, except for the case where Ha = 0. In fact, for
Ha = 50, the results obtained through this random distribution pre-
sented the lowest errors when compared to the values presented in
[10]. The results when using the pseudo-random distribution of
points are actually arithmetic means of results obtained on five dif-
ferent pseudo-randomly distributed sets of points obtained with
different input parameters to Sobol’s algorithm.

When more centers are used (15 � 15, instead of 6 � 6), the
deviation of the average Nusselt number from the ones reported
in Ref [10], for different values of parameter v and for the pseu-
do-random distribution of the collocation points are presented in
Table 6. For this test case, where the number of centers was already
large, there was not much decrease of the relative error compared
to the case where a uniform distribution of centers was used. From
this Table, the best non-uniformity factor found was v = 0.2, where
only the cases with Ha = 25 and 50 had a decrease in the relative
error. Also, the pseudo-random distribution of the collocation
points reduced the error to the same levels obtained with v = 0.2.
eter v and for a pseudo-random distribution of the collocation points.

ters and the solution using a pseudo-random distribution of the centers.

Error RBF Error RBF Error RBF Error
(%) (6 � 6) (%) (6 � 6) (%) (6 � 6) (%)

v = 0.6 v = 0.8 Random

5.97 0.86 57.21 0.79 60.70 2.35 16.92
3.57 1.39 17.75 0.79 53.25 1.90 12.43
4.39 1.11 2.63 0.79 30.70 1.21 6.14

13.00 0.96 4.00 0.79 21.00 1.00 0.00

enters and the solution using a pseudo-random distribution of the centers.

Error RBF Error RBF Error RBF Error
(%) (15 � 15) (%) (15 � 15) (%) (15 � 15) (%)

v = 0.6 v = 0.8 Random

0.50 0.86 57.21 0.79 60.70 2.00 0.50
0.00 1.04 38.46 1.05 37.87 1.70 0.59
1.75 1.15 0.88 0.96 15.79 1.16 1.75
3.00 0.99 1.00 0.98 2.00 0.97 3.00
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Thus, although the non-uniformity factor presented some oscilla-
tory behavior, the pseudo-random distribution was stable and
capable of producing good results. For complex geometries, where
the grid generation can be difficult, such approach can be very
useful.

6. Conclusions

This work used the radial basis function formulation to solve a
magnetohydrodynamic problem in two dimensions in an incom-
pressible, steady-state and laminar flow-field with constant mag-
netic field applied. The RBF results were compared against
control volume method results reported in the literature. We also
compared the computing time with a finite volume method using
primitive variables. The accuracy of RBF was very good and com-
puting time was at least an order of magnitude smaller. The use
of the RBF-MHD formulation in solving complex physical problems
seems to be very promising, since it does not require a structured
mesh generation. Even for partial differential equations of high or-
der, such as the one used in this paper, they do not suffer from the
classical truncation error presented in the finite difference or finite
volume methods. The use of a pseudo-random distribution of the
collocation points showed good results. Thus, the RBF-MHD model
can be used in complex geometries, where the grid generation is
difficult. The RBF formulation, however, needs more research in or-
der to specify the best shape parameter in less computing time.

Acknowledgements

This work was partially funded by CNPq, CAPES (agencies for
the fostering of science from the Brazilian Ministry of Science
and Education) and FAPERJ (agency for the fostering of science
from the Rio de Janeiro State). The authors are also very thankful
to Prof. Alain J. Kassab from University of Central Florida for his
suggestions (during IPDO-2007 in Miami) on how to choose the
best shape parameter for RBF approximations. The authors are also
grateful for the partial financial support provided for this work by
the US Air Force Office of Scientific Research under grant FA9550-
06-1-0170 monitored by Dr. Todd E. Combs, Dr. Fariba Fahroo and
Dr. Donald Hearn and by the US Army Research Office/Materials
Division under the contract number W911NF-06-1-0328 moni-
tored by Dr. William M. Mullins. The views and conclusions con-
tained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the US Air Force
Office of Scientific Research, the US Army Research Office or the
US. Government. The US. Government is authorized to reproduce
and distribute reprints for government purposes notwithstanding
any copyright notation thereon.
References

[1] E.J. Kansa, Multiquadrics – a scattered data approximation scheme with
applications to computational fluid dynamics – II. Solutions to parabolic,
hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19
(1990) 149–161.

[2] R.L. Hardy, Multiquadric equations of topography and other irregular surfaces,
J. Geophys. Res. 176 (1971) 1905–1915.

[3] V.M.A. Leitão, A mesheless method for Kirchhoff plate bending problems, Int. J.
Numer. Methods Eng. 52 (2001) 1107–1130.

[4] V.M.A. Leitão, RBF-based meshless methods for 2D elastostatic problems, Eng.
Anal. Boundary Elem. 28 (2004) 1271–1281.

[5] H. Wendland, Error estimates for interpolation by compactly supported radial
basis functions of minimal degree, J. Approx. Theory 93 (1998) 258–272.

[6] M.D. Buhmann, Radial Basis Functions: Theory and Implementations,
Cambridge University Press, UK, 2003.

[7] G.S. Dulikravich, S.R. Lynn, Unified electro-magneto-fluid dynamics (EMFD): a
survey of mathematical models, Int. J. Non-Linear Mech. 32 (5) (1997) 923–932.

[8] M.J. Colaço, G.S. Dulikravich, A multilevel hybrid optimization of
magnetohydrodynamic problems in double-diffusive fluid flow, J. Phys.
Chem. Solids 67 (2006) 1965–1972.

[9] J.P. Garandet, T. Alboussiere, R. Moreau, Buoyancy driven convection in a
rectangular enclosure with a transverse magnetic field, Int. J. Heat Mass
Transfer 35 (4) (1992) 741–748.

[10] N.M. Al-Najem, K.M. Khanafer, M.M. El-Refaee, Numerical study of laminar
natural convection in tilted enclosure with transverse magnetic field, Int. J.
Numer. Methods Heat Fluid Flow 8 (6) (1998) 651–672.

[11] J.P. Van Doormaal, G.D. Raithby, Enhancements of the SIMPLE method for
predicting incompressible fluid flow, Numer. Heat Transfer 7 (1984) 147–163.

[12] G.D. Raithby, K.E. Torrance, Upstream-weighted differencing scheme and their
application to elliptic problems involving fluid flow, Comput. Fluids 2 (1974)
191–206.

[13] B.P. Leonard, M.K. MacVean, A.P. Lock, The flux integral method for
multidimensional convection and diffusion, Appl. Math. Modell. 19 (1995)
333–342.

[14] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes
FORTRAN, Cambridge University Press, 1992.

[15] E. Divo, A.J. Kassab, An efficient localized RBF meshless method for fluid
flow and conjugate heat transfer, ASME J. Heat Transfer 129 (2) (2007)
124–136.

[16] S. Rippa, An algorithm for selecting a good value for the parameter c in radial
basis function interpolation, Adv. Comp. Math. 11 (1999) 193–210.

[17] P.P. Chinchapatnam, Radial Basis Function Based Meshless Methods for Fluid
Flow Problems, Ph.D. Thesis, Department of Mechanical Engineering, School of
Engineering Sciences, University of Southampton, UK, 2006.

[18] M.M. El-Refaee, M.M. El-Sayed, N.M. Al-Najem, I.E. Megahid, Steady-state
solutions of buoyancy-assisted internal flows using a fast false implicit
transient scheme, Int. J. Numer. Methods Heat Fluid Flow 6 (6) (1996) 3–23.

[19] I. Sobol, Y.L. Levitan, The Production of Points Uniformly Distributed in a
Multidimensional Cube, Institute of Applied Mathematics, USSR Academy of
Sciences, vol. 40, 1976.


	Magnetohydrodynamic simulations using radial basis functions
	Introduction
	Magnetohydrodynamic equations
	Test problem formulation
	Radial basis function approximation
	Numerical results
	Conclusions
	Acknowledgements
	References


